
Multi-task Learning based Pre-trained Language Model for
Code Completion

Fang Liu

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

liufang816@pku.edu.cn

Ge Li
∗

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lige@pku.edu.cn

Yunfei Zhao

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

zhaoyunfei@pku.edu.cn

Zhi Jin
∗

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

zhijin@pku.edu.cn

ABSTRACT
Code completion is one of the most useful features in the Integrated

Development Environments (IDEs), which can accelerate software

development by suggesting the next probable token based on the

contextual code in real-time. Recent studies have shown that statis-

tical language modeling techniques can improve the performance

of code completion tools through learning from large-scale soft-

ware repositories. However, these models suffer from two major

drawbacks: a) Existing research uses static embeddings, which map

a word to the same vector regardless of its context. The differences

in the meaning of a token in varying contexts are lost when each to-

ken is associated with a single representation; b) Existing language

model based code completion models perform poor on completing

identifiers, and the type information of the identifiers is ignored in

most of these models. To address these challenges, in this paper, we

develop a multi-task learning based pre-trained language model for

code understanding and code generation with a Transformer-based

neural architecture. We pre-train it with hybrid objective functions

that incorporate both code understanding and code generation

tasks. Then we fine-tune the pre-trained model on code completion.

During the completion, our model does not directly predict the

next token. Instead, we adopt multi-task learning to predict the

token and its type jointly and utilize the predicted type to assist the

token prediction. Experiments results on two real-world datasets

demonstrate the effectiveness of our model when compared with

state-of-the-art methods.

∗
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00

https://doi.org/10.1145/3324884.3416591

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; •

Software and its engineering→ Softwaremaintenance tools.
KEYWORDS

code completion,multi-task learning, pre-trained languagemodel,

transformer networks

ACM Reference Format:
Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task Learning based

Pre-trained Language Model for Code Completion. In 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’20), September
21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3324884.3416591

1 INTRODUCTION
As the complexity and scale of the software development continue

to grow, large corpora of open source software projects present

an opportunity for modeling source code on machine learning [1].

Most of these approaches are based on the observation of source

code’s naturalness [19], that is, source code is written by humans

and for humans to read, it displays some of the statistical proper-

ties as natural language. Thus, statistical language models have

been used for source code modeling [19, 42, 46], benefiting many

software engineering tasks, including code summarization [23, 49],

code clone detection [51, 52] program repair [15, 47], especially, in

code completion [17, 19, 27, 46].

Code completion is an essential feature of Integrated Develop-

ment Environments (IDEs). It speeds up the process of software

development by suggesting the next probable token based on exist-

ing code. In recent years, as the success of deep learning, Recurrent

Neural Network (RNN)-based language models have been applied

to source code modeling [3, 27]. In these models, a piece of source

code is represented as a source code token sequence or an Ab-

stract Syntactic Tree (AST) node sequence. Given a partial code

sequence, the model computes the probability of the next token or

AST node and recommends the one with the highest probability.

Furthermore, these language models can also learn useful word

embeddings, which can be used for other downstream tasks in the

same way as word2vec-style embeddings [37]. However, source

code has some special properties, which have not been exploited in

473

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

https://doi.org/10.1145/3324884.3416591
https://doi.org/10.1145/3324884.3416591
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3324884.3416591&domain=pdf&date_stamp=2021-01-27

ASE ’20, September 21–25, 2020, Virtual Event, Australia Liu et al.

1 pu b l i c long getMaximumTime (IoEventType type) {

i f (! t imerManager . con ta in sKey (type))

3 throw new I l l e g a lA r gumen tEx c e p t i o n (" P l e a s e add

t h i s even t f i r s t . ") ;

r e t u r n t imerManager . g e t (type) . getMaximum () ;

5 }

Code 1: A Java method example.

Figure 1: Java IDE completion example.

existing statistical language models. We discuss two critical issues

in detail below.

The contextual information is not well considered in the existing

code completion models. Writing clean and readable code that con-

forms to the specification has been paid more attention in software

development, which helps the developers reuse and maintain the

code. When programming, developers tend to use meaningful and

conventional identifier names and natural language documentation

[36]. As a result, information contained in the source code can be

exploited by machine learning algorithms. Most of these models

are based on learned representations called embeddings, which

transform words into a continuous vector space [37]. However,

existing research [3, 25, 27] uses static embeddings, which map a

word to the same vector regardless of its context. For example, in

Java method overloading, the same function name can have dif-

ferent meanings based on the number and type of the parameters.

However, the static embedding will map it to the same vector. The

differences in the meaning of a token in varying contexts are lost

when each token is associated with a single representation. The

surrounding tokens of the program entities usually contain certain

information that reflects the roles of the entities. For instance, for

a method name, the surrounding tokens might include the vari-

ables/fields/methods that are used/accessed/invoked to implement

the method. Taking the Java method in Code 1 as an example, the

function name getMaximumTime can be inferred from the variables’

names and method calls in the body, e.g., getMaximum, timerMan-
ager. These tokens provide information about possible values the

function could take, and so should affect its representation.

Identifier completions are challenging, and existing statistical

Language Model (LM) based code completion models perform

poorly on completing identifiers. These approaches consider ev-

ery token in the source code file as targets for completion. More

than two-thirds of the completions do not refer to identifiers. In-

stead, the majority concern punctuation-like tokens (e.g., operators,

braces), which are much easier to complete than identifiers, but

these completions are not that beneficial to developers [25]. Be-

sides, the type information of the identifiers is ignored in most

of the models. Modern IDEs for most languages heavily rely on

types to make helpful suggestions for completing partial code. For

example, when accessing the field of an object in a Java IDE, code

completion suggests suitable field names based on the object’s type

[35]. Taking the code completion example of a Java IDE (ItelliJ

IDEA) in Figure 1 as an example, the IDE suggests “Scanner” as the

next token based on its type (i.e., java.util), and not just predict the

frequent token in the corpus. For those dynamic languages, such as

Python and JavaScript, IDEs often fail to make accurate suggestions

because the types of code elements are unknown, which further

demonstrates the importance of the type information. However,

most of the existing LM-based source code modeling techniques

and code completion studies do not take the type information into

consideration.

In response to the observations and concerns raised above, we

have developed a Code Understanding and Generation pre-trained

Language Model (CugLM) for source code modeling. Recent work

on pre-trained language models has found that the contextual em-

beddings produced by these models can lead to better performance

for many natural language processing (NLP) tasks [10, 22, 39, 40]. In

these models, the representation for each word is learned using the

language models, where the vector of the word is computed based

on the context it is used. Thus, the vector of the same word under

different contexts can be different. In particular, BERT [10] proposes

a bidirectional Transformer Encoder with two new pre-training

objective: “masked language model” and “next sentence prediction”,

where “masked language model” randomly masks some of the to-

kens from the input, and the objective is to predict the masked word

based only on its context, and “next sentence prediction” predicts

whether two sentences follow each other in a natural discourse. By

using these two objectives, BERT can produce powerful bidirec-

tional contextual representations and advances the state-of-the-art

for many NLP tasks. Inspired by the success of pre-trained language

models in NLP, we propose a multi-task learning based pre-trained

language model to produce general and contextual representations

for programs that can broadly support code understanding and

generation tasks, and then apply it to code completion. During the

pre-training period, we adopt the multi-task learning framework

to learn the following three training objectives jointly:

1)Masked bidirectional LanguageModeling: The identifiers
are more informative for understanding the program and correctly

suggesting the identifiers is challenging in existing code completion

research [25]. Thus, producing contextual and general represen-

tations for tokens, especially for identifiers, would be helpful for

source code modeling and code completion. For these reasons, we

mask the identifiers from the programs, and the objective is to

predict the masked tokens based on their bidirectional context.

2) Next Code segment Predicting: We argue that understand-

ing relationships between code segments can help in source code

modeling. In order to achieve this, we pre-train a binarized next

code segment prediction task, that is, predicting whether two seg-

ments of code tokens follow each other in a piece of code snippet.

474

Multi-task Learning based Pre-trained Language Model for Code Completion ASE ’20, September 21–25, 2020, Virtual Event, Australia

3)Unidirectional LanguageModeling: a left-to-right language
modeling task, where the representation of each token encodes only

the leftward context tokens and itself. This training objective is

added because for the generation tasks (e.g., code completion), only

leftward contextual tokens are allowed.

After the model has been pre-trained, we fine-tune it (directly ap-

ply the pre-trained model and adapt the model on downstream tasks

by fine-tuning the pre-trained parameters) on the code completion

task. During the code completion, our model does not directly pre-

dict next token, instead, we adopt a multi-task learning framework

to predict the token and its type. We first predict the type of the

token, and then use predicted type to assist the token prediction.

We create two massive corpora of Java and TypeScript programs

collected from GitHub to pre-train and fine-tune the model. We

compare our model with two state-of-the-art code completion ap-

proaches: Byte Pair Encoding based Neural Language Model (BPE

NLM) [25] and Pointer Mixture Network [27]. For completing all

types of tokens, our model achieves the accuracy of 80% and 81% on

Java and TypeScript datasets, respectively, which improves Pointer

Mixture Network by 17% and 24%, and improves BPE NLM by 19%

and 24%, in terms of relative improvements. For identifier comple-

tion, our model achieves the accuracy of 48% and 39%, respectively,

which improves Pointer Mixture Network by 29% and 34%, and im-

proves BPE NLM by 11% and 9%, in terms of relative improvements.

The main contributions of this paper are summarized as follows:

• We present the first attempt at pre-training a language model

with a transformer-based architecture for code completion.

• We take advantage of the type information to help our model

make better suggestions on identifiers.

• We compare ourmodel with state-of-the-art code completion

models and evaluate the performance of these models on two

real-world datasets. Experimental results demonstrate that

our model achieves the best performance compared with the

baseline models.

2 BACKGROUND
2.1 Statistical Language Model
Statistical language models capture the statistical patterns in lan-

guages by assigning occurrence probabilities to a sequence of words

in a particular sequence, which will score an utterance high, if it

sounds “natural” to a native speaker, and score low the unnatural (or

wrong) sentences. Programming languages are kind of languages

that contain predictable statistical properties [19], which can be

modeled by statistical language models. Given a token sequence S

= 𝑠1, 𝑠2, ..., 𝑠𝑡 , the probability of the sequence is computed as:

𝑝 (𝑆) = 𝑝 (𝑠1)𝑝 (𝑠2 |𝑠1)𝑝 (𝑠3 |𝑠1𝑠2), ..., 𝑝 (𝑠𝑡 |𝑠1𝑠2, ..., 𝑠𝑡−1) (1)

The probabilities are hard to estimate when the number of the

context tokens 𝑠1, 𝑠2, ..., 𝑠𝑡−1 is tremendous. The N-gram model

based on the Markov assumption is proposed to address this chal-

lenge, where the probability of a token is dependent only on the

𝑛−1 most recent tokens. N-gram based models have been generally

applied to code completion [17, 19, 46]. These models have been

proved to capture the repetitive regularities in the source code ef-

fectively. In recent years, deep recurrent neural networks, including

Long Short-Term Memory (LSTM) [20] and Gate Recurrent Unit

(GRU) [6], have shown great performance on modeling program-

ming languages [3, 27, 28]. By using recurrent connections and

gate mechanisms, information can cycle inside these networks for

a long time, which loosens the fixed context size and can capture

longer dependencies than the N-gram model.

However, the introduction of the gating mechanism in LSTMs

and GRUs might not be sufficient to address the gradient vanishing

and explosion issue fully. To ease this issue, attention mechanisms

[2, 48], which add direct connections between long-distance word

pairs, are proposed. For example, the Transformer [48] is an ar-

chitecture based solely on attention mechanism. It uses a multi-

headed self-attention mechanism to replace the recurrent layers

to reduce sequential computation and capture longer-range depen-

dency. Later, Transformer-XL [8] is proposed by introducing the

notion of recurrence into the deep self-attention network. Thus it

enables the Transformer networks to capture the very long-term

dependency during language modeling.

2.2 Multi-task Learning
Multi-task learning is an approach for knowledge transfer across

related tasks. It improves generalization by leveraging the domain-

specific information contained in the training signals of related

tasks [4]. Through sharing hidden layers among tasks, the model

can capture the common features among all the tasks. Furthermore,

by preferring the representation that all tasks prefer, the risk of

over-fitting is reduced, and the model can be more general to new

tasks in the future. Multi-task learning has been successfully used

in many fields including natural language processing [10, 14, 31],

speech recognition [9] and computer vision [32, 34].

2.3 Pre-trained Language Models
Language model pre-training has shown to be effective for NLP,

and has achieved the state-of-the-art results across many NLP tasks

[7, 10, 22, 39, 40]. The advantages of the pre-trained model can

be summarized as follows: (1 By pre-training on the huge corpus,

the model can learn universal representations and help with the

target tasks; 2) The pre-trained model can provide a better model

initialization, which leads to a better generalization performance

on the downstream tasks. 3) Pre-training can be regarded as a

kind of regularization to avoid over-fitting on small data. To apply

the pre-trained language representations to downstream tasks, the

feature-based approaches use the pre-trained representations as

additional features [39], and the fine-tuning approaches directly

adapt the model on the downstream tasks by simply fine-tuning

the pre-trained parameters [10, 40]. Generative Pre-trained Trans-

former (GPT) [40] and Bidirectional Encoder Representations from

Transformers (BERT) [10] are the widely used fine-tuning approach,

where BERT has significantly improved the performance of a wide

range of natural language understanding tasks. However, the bidi-

rectionality nature of BERTmakes it difficult to be applied to natural

language generation tasks. To overcome this limitation, UNIfied

pre-trained Language Model (UNILM) [11] that can be applied to

both natural language understanding (NLU) and natural language

generation (NLG) tasks was proposed. Inspired by these models,

we build a pre-trained language model for code understanding and

generation, and then fine-tune it on code completion.

475

ASE ’20, September 21–25, 2020, Virtual Event, Australia Liu et al.

[CLS] x2 x3 xn...

token embeddings

segment embeddings

position embeddings

Transformer Layer 1

Transformer Layer 2

Transformer Layer L

...

attend to all tokens

attend to left context

NCP

Self-attention Masks

Code Understanding and Generation Pre-trained LM with Shared Parameters

[MASK] xn-1[MASK]x5

h[CLS] h2 h3 hn...h[MASK] hn-1h[MASK]h5

h[CLS] h2 h3 hn...h[MASK] hn-1h[MASK]h5

y4 yn-2

Transformer

Transformer

(a) Masked bidirectional LM (MLM)

h[CLS] h2 h3 hn...h[MASK] hn-1h[MASK]h5

y[CLS]

Transformer

Transformer

(b) Next code segment prediction(NCP)

Transformer

Transformer

h[CLS] h2 h3 hn...h[MASK] hn-1h[MASK]h5

y4 yn-2y2 y3 y5 yn-1 yn

(c) Unidirectional LM (ULM)

 Prevent from Attending

Figure 2: Overview of CugLMpre-training. Themodel parameters are shared across the pre-training objectives (i.e., MLM, NCP,
and ULM). We use different self-attention masks to control the access to context for each token.

3 CugLM
Wedescribe the details about our proposedCodeunderstanding and
generation pre-trained Language Model (CugLM) in this section.

3.1 Model Architecture
Given an input program token sequences 𝑥 = 𝑥1, 𝑥2, ..., 𝑥𝑛 , CugLM

obtains a contextualized vector representation for each token. The

model architecture is shown in Figure 2. We adopt an 𝐿-layer

Transformer as the language model to encode the input vectors

𝑥 = 𝑥1, 𝑥2, ..., 𝑥𝑛 into contextual representations at different levels

𝐻 𝑙 = [ℎ𝑙
1
, ℎ𝑙

2
, ..., ℎ𝑙𝑛], where 𝐻 𝑙 = Transformer𝑙 (𝐻 𝑙−1), 𝑙 ∈ [1, 𝐿]. In

Figure 2 and later sections, we omit the superscript 𝐿 for the hidden

vectors of the final layer ℎ𝐿
𝑖
to make the illustration less cluttered.

For each transformer layer (block), multi-attention heads are used

to aggregate the output of the previous layer, and the output of a

self-attention head 𝐴𝑙 is computed as:

𝑄 = 𝐻𝐿−1𝑊𝑄

𝑙
, 𝐾 = 𝐻𝐿−1𝑊𝐾

𝑙
, 𝑉 = 𝐻𝐿−1𝑊𝑉

𝑙

𝑀𝑖 𝑗 =

{
0, allow to attend

−∞, prevent from attending

𝐴𝑙 = softmax(𝑄𝐾
𝑇√
𝑑𝑘

+𝑀)𝑉

(2)

where 𝐻 𝑖 ∈ R |𝑥 |×𝑑ℎ denotes the 𝑖-th layer’s output. The queries 𝑄 ,

keys 𝐾 , and values 𝑉 are computed by linearly projecting the pre-

vious layer’s output 𝐻 𝑙−1 using parameter matrices𝑊
𝑄

𝑙
,𝑊𝐾

𝑙
,𝑊𝑉

𝑙
.

𝑀 ∈ R |𝑥 |× |𝑥 | is the mask matrix that determines whether a pair

of tokens can be attended to each other. For different pre-training

objectives, we use different mask matrices𝑀 to control how many

contextual tokens can a token attend to when computing its contex-

tualized representations, as illustrated in Figure 2. For bidirectional

LM, the elements of the mask matrix are all 0s, which means that

all the tokens have access to each other. For unidirectional LM,

the upper triangular part of the mask is set to −∞, indicating that

each token can only access the leftward context tokens and itself.

The output of CugLM includes (1) contextual vector representation

of each input token, and (2) the representation of [CLS], which is

short for “CLaSsification” and works as the aggregated sequence

representation and can be used for classification tasks.

During the pre-training period, themodel’s parameters are shared

and optimized with several objectives, namely, Masked bidirectional

LM, Next Code segment Prediction, and Unidirectional LM. After

the model is pre-trained, we can then fine-tune it for downstream

tasks. In this paper, we fine-tune CugLM on code completion.

3.2 Input Representation
The input 𝑥 is a token sequence, which is a pair of segments packed

together. As shown in Figure 3, for a given token, its vector represen-

tation is computed by summing the corresponding token, segment

and position embeddings.

• For token embeddings, the embedding matrix is randomly

initialized, and then is adjusted as part of the training process.

Two special tokens [CLS], [SEP] are defined, where [CLS],

which is short for “CLaSsification”, always appears at the

beginning of the input. The final hidden state corresponding

to [CLS] can be used as the aggregate sequence representa-

tion for classification tasks, for example, in next sentence

prediction task. [SEP], which is short for “SEPeration”, is

used to separate the sentence pairs.

• The segment embeddings, i.e., 𝐸𝐴 and 𝐸𝐵 are also used to

differentiate the code segment pairs. For each token of the

first code segment, a learned embedding 𝐸𝐴 is added, and

a learned embedding 𝐸𝐵 is added to each token of the sec-

ond code segment. The embedding matrix for the segment

embeddings is also randomly initialized

476

Multi-task Learning based Pre-trained Language Model for Code Completion ASE ’20, September 21–25, 2020, Virtual Event, Australia

thread = new Thread (ct) ; thread . start () ;[CLS] [SEP]input tokens

token
embeddings

segment
embeddings

position
embeddings

E[CLS] Ethread E= Enew EThread E(Ect E) E; E[SEP] Ethread E. E[tart E(E) E;

EA EA EA EA EA EA EA EA EA EA EB EB EB EB EB EB

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

Figure 3: Input representation. The input embeddings is the sum of the token embeddings, the segment embeddings, and the
position embeddings.

• To make use of the order of the sequence, we use learned po-

sitional embeddings with sequence lengths up to 128 tokens.

3.3 Pre-training Procedure
To pre-train CugLM, we adopt multi-task learning to learn three

tasks jointly, as shown in Figure 2, including Masked bidirectional

Language Modeling (MLM), Next Code segment Predicting (NCP),

and Unidirectional Language Modeling (ULM). For the first two ob-

jectives, the Transformer network is under the bidirectional settings,

and for the last objective, the Transformer network is unidirectional.

a)Masked bidirectional Language Modeling: In order to train

deep bidirectional representations for the program, we adopt a sim-

ilar objective with BERT, that is, masking some percentage of the

input tokens and then predicting only those masked tokens. Differ-

ent from BERT, we only mask the identifiers with type information,

where the type information can be extracted by static analysis or be

annotated by developers, considering that these identifiers are more

informative for understanding the program. Then the objective is to

predict the masked identifiers based on their bidirectional contex-

tual tokens, where all tokens can attend to each other in prediction.

It encodes contextual information from both directions and can

generate better contextual representations of the masked identifiers

as well as the other tokens than its unidirectional counterpart. The

final hidden vectors corresponding to the mask tokens are fed into

the output softmax layer to produce the probability distribution of

the outputs.

b) Next Code segment Predicting: Understanding the relation-

ship between two sentences is quite important for many NLP tasks,

for example, Question Answering (QA) and Natural Language In-

ference (NLI), which can help to understand the input text in more

depth. We argue that understanding relationships between code

segments also help in source code modeling. In order to achieve

this, we pre-train a binarized next code segment prediction task,

that is, predicting whether two segments of code tokens follow each

other in a piece of code snippet. Specifically, when choosing the

code segments A and B for each pre-training example, 50% of the

time B is the actual next code segment that follows A, and 50% of

the time it is a random code segment from the corpus. For example:

Input = [CLS] public void setTextDirection (int textDirection) {

[SEP] this . mTextDirection = textDirection ; }

Label = 1

Input = [CLS] public void setTextDirection (int textDirection) {

[SEP] this . request = request ;

Label = 0

The final hidden vector corresponding to [CLS], which works as

the aggregated sequence representation, is fed into the output soft-
max layer to produce the probability distribution of classification

results.

c) Unidirectional Language Modeling: For language generation
tasks, for example, code completion, the context of the predicted

token should only consist of the token on its left. Thus, we create

the left-to-right language modeling task as another pre-training

objective, namely predicting the next token 𝑥𝑡+1 given the preced-

ing context tokens 𝑥1, 𝑥2, ..., 𝑥𝑡 . The representation of each token

encodes only the leftward context tokens and itself. This can be

done using a triangular matrix for self-attention mask𝑀 , where the

upper triangular part of the self-attention mask is set to −∞, and

others to 0. At each time step 𝑡 , the final hidden vector correspond-

ing to 𝑥𝑡 is fed into the softmax layer to produce the probability

distribution of the predicted token 𝑦𝑡 .

The pre-training procedure follows the existing language model

pre-training approaches. The parameters of CugLM are learned

to minimize the sum of the cross-entropy losses of the three pre-

training tasks, and are shared among all the tasks. The final loss

function is given below:

min

𝜃
L𝑀𝐿𝑀 (𝜃) + L𝑁𝐶𝑃 (𝜃) + L𝑈𝐿𝑀 (𝜃) (3)

3.4 Fine-tuning Procedure
When the model is pre-trained, we fine-tune it on code completion

task. In code completion, the context of the predicted token should

only consist of all the token on its left. Thus, the representation of

each token can encode only the leftward context tokens and itself.

During the fine-tuning procedure, the following two objectives are

optimized:

a) Unidirectional Masked Language Modeling (UMLM): Dif-
ferent from the MLM objective in pre-training, the UMLM objective

in fine-tuning is to predict the masked token based only on its

leftward context, where all tokens can only attend to the tokens on

its left in prediction. The transformer network is set to unidirec-

tional using a triangular matrix for the self-attention mask. All the

identifiers that have type information are masked in each sequence.

477

ASE ’20, September 21–25, 2020, Virtual Event, Australia Liu et al.

Besides, our model not directly predicts the masked token. Instead,

we adopt the multi-task learning framework to predict the token

and its type. We first predict the type of the token, and then the

predicted type is used to assist the token prediction, as shown in

Figure 4. The reason for formulating the code completion task as a

two-step prediction instead of predicting the type and token jointly

lies in that, by predicting the type firstly and then use the predicted

results as extra input for the token prediction can constraint our

model to make more accurate prediction on the type and further

enhance the token prediction performance.

h1 h2 h3 hn...h[MASK] hn-1h[MASK]h5

Token4

Type4

Token prediction

Type prediction

Tokenn-2

Typen-2

Transformer

Transformer

Figure 4: Model architecture for UMLM.

1) Type prediction: The final hidden vector (i.e., the output of the

Transformer) corresponding to the mask token ℎ [𝑀𝐴𝑆𝐾] is used
to compute the output vector for the token’s type 𝑂𝑡𝑦𝑝𝑒 . We use

the softmax function to produce the probability distribution of the

outputs 𝑌𝑡𝑦𝑝𝑒 :

𝑂𝑡𝑦𝑝𝑒 = tanh(𝑊 𝑜ℎ [𝑀𝐴𝑆𝐾])
𝑌𝑡𝑦𝑝𝑒 = softmax(𝑊 𝑦𝑂𝑡𝑦𝑝𝑒 + 𝑏𝑦)

(4)

where𝑊 𝑜 ∈ R𝐻×𝐻𝑡𝑦𝑝𝑒 ,𝑊 𝑦 ∈ R𝑉𝑡𝑦𝑝𝑒×𝐻𝑡𝑦𝑝𝑒 , 𝑏𝑦 ∈ R𝑉𝑡𝑦𝑝𝑒 are train-

able parameters.𝑉𝑡𝑦𝑝𝑒 is the vocabulary size of the token’s type, 𝐻

is the hidden size of the transformer network, 𝐻𝑡𝑦𝑝𝑒 is the embed-

ding size of type vector.

2) Token prediction: After predicting the token’s type, we use the

predicted type to assist the token prediction. The vector of the

predicted type 𝐸𝑡𝑦𝑝𝑒 and the hidden vector of the mask token

ℎ [𝑀𝐴𝑆𝐾] are concatenated to compute the output vector for the

token𝑂𝑡𝑜𝑘𝑒𝑛 . Then the output vector is fed into the output softmax
layer to compute the output vector for the token 𝑌𝑡𝑜𝑘𝑒𝑛 :

𝑂𝑡𝑜𝑘𝑒𝑛 = tanh(𝑊 𝑜 (ℎ [𝑀𝐴𝑆𝐾] ;𝐸𝑡𝑦𝑝𝑒))
𝑌𝑡𝑜𝑘𝑒𝑛 = softmax(𝑊 𝑦𝑂𝑡𝑜𝑘𝑒𝑛 + 𝑏𝑦)

(5)

where𝐸𝑡𝑦𝑝𝑒 is the embedding of the predicted type,𝑊 𝑜 ∈ R𝐻𝑡𝑜𝑘𝑒𝑛×𝐻
,

𝑊 𝑦 ∈ R𝑉𝑡𝑜𝑘𝑒𝑛×𝐻𝑡𝑜𝑘𝑒𝑛
,𝑏𝑦 ∈ R𝑉𝑡𝑜𝑘𝑒𝑛 are trainable parameters.𝑉𝑡𝑜𝑘𝑒𝑛

is the vocabulary size of the token, and “;” denotes the concatenation

operation.

b) Unidirectional Language Modeling (ULM): This objective is
a left-to-right language modeling task that is the same as the pre-

training procedure. Given the preceding context tokens 𝑥1, 𝑥2, ..., 𝑥𝑡 ,

the model predicts the next token 𝑥𝑡+1, where the representation
of each token encodes only the leftward context tokens and itself.

Table 1: Statistics of the datasets.

Java TypeScript

Projects 9,708 8,446

Files 800,983 227,424

Lines 5.4 * 10
7

8.8 * 10
6

of Tokens 6.9 * 10
6

1.1 * 10
6

of Types 6.4 * 10
6

1.7 * 10
5

Masked ID proportion 21.04% 9.74%

During the fine-tuning procedure, the parameters of CugLM are

learned to minimize the sum of the cross-entropy losses of the two

fine-tuning tasks and are shared among all the tasks. The final loss

function is given below:

min

𝜃
L𝑈𝑀𝐿𝑀 (𝜃) + L𝑈𝐿𝑀 (𝜃) (6)

Through learning these two objectives jointly, we hope themodel

can make better predictions on both the identifiers and the other

tokens.

4 EXPERIMENTS AND ANALYSIS
4.1 Data preparation
We pre-train and fine-tune our model across two programming

languages: Java and TypeScript. The programs in the corpus are

collected from publicly available open-source GitHub repositories

by removing duplicate files and project forks. Each program is

tokenized into token sequence. The detailed information is shown

in Table 1. We use 60% of the projects for pre-training, and 40% of

the projects for fine-tuning on code completion task. During the

fine-tuning, we split the projects into train/validation/test sets in

the proportion 8:1:1. For the other baselines, all the programs used

in pre-training and the training programs used in fine-tuning are

used as the training set, and the validation and test sets are the

same as in our fine-tuning procedure. We also randomly sample 200

program files from both Java and TypeScript test sets as the small

test sets for Byte Pair Encoding based Neural Language Model (BPE

NLM) [25] evaluation since when performing completion (testing)

in their model, they use a variation of the beam search algorithm

to combine the sub-units to complete tokens, which is very time-

consuming. It takes several minutes to complete a single program

file and will take tens of days to perform completion on the large

test sets (e.g., the Java test set contains 14,600 files). Thus, we create

small test sets.

For Java programs, we extract the identifiers’ type information

through static analysis. For TypeScript programs, we apply the

approach in Hellendoorn et al. [16] to extract type annotations

of the identifiers. We filter the programs to make sure at least

10% of type annotations are user-defined types in each TypeScript

file. Figure 5 shows the examples for Java and TypeScript code,

where the identifiers that have type are marked with underlines,

and the green tokens next to the identifiers are the corresponding

types. To generate each training input sequence for pre-training,

we sample two spans of tokens from the corpus, which we refer

to as segments 𝑆1 and 𝑆2. Each segment contains several lines of

source code tokens. For the first segment 𝑆1, we sample the first 𝑁

lines from one program file, where 𝑁 is randomly sampled from

478

Multi-task Learning based Pre-trained Language Model for Code Completion ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Performance of baseline models and our approach.

Model

Java TypeScript

Large Test Small Test Large Test Small Test

All Tokens Identifiers All Tokens Identifiers All Tokens Identifiers All Tokens Identifiers

Vanilla LSTM 64.28% 33.84% 64.73% 33.11% 64.42% 28.11% 63.31% 23.91%

Pointer Mixture Network 68.30% 38.41% 68.49% 37.54% 68.75% 33.76% 65.75% 29.26%

BPE NLM - - 67.17% 43.67% - - 65.39% 36.16%

Transformer-XL 72.12% 43.63% 70.96% 40.92% 73.94% 37.46% 68.88% 34.90%

CugLM 84.06% 55.19% 80.07% 48.47% 82.14% 41.85% 81.36% 39.28%

 type NamespaceName = |'s'|'s'|'s'|'s'|'s'|'s'|'s';
 interface Signature {
 name: string;
 email: string;
 when: Date;
 }
 interface Commit {
 author: Signature;
 committer: Signature;
 sha: string;
 message: string;
 }
 interface NamespaceInfo {
 count: number;
 namespace: NamespaceName;
 data: { [key]: {
 intro:string;
 name: string;
 };
 };
 }

 package com.labo.kaji.swipeawaydialog;
 import android.app.Application;
 import android.test.ApplicationTestCase;
 public class ApplicationTest extends ApplicationTestCase <Application> {
 public ApplicationTest () {
 super(Application.class);
 }
 }

 ApplicationTestCase: android.test.ApplicationTestCase
 Application: android.app.Application
 ApplicationTest: com.labo.kaji.swipeawaydialog.ApplicationTest

 Application: android.app.Application

TypeScript

Java

Figure 5: Code examples for type annotations.

1 to the length of the code lines of the program file. 50% of the

time, the second segment 𝑆2 is the rest of the lines from the same

program file that follows 𝑆1, and 50% of the time it is a random code

segment sampled from other program files of the corpus, which

is done for the “next code segment prediction (NCP)” task. They

are sampled such that the combined length is ≤ 128 tokens. For the

“Masked bidirectional Language Modeling (MLM)” task, we only

mask those identifiers that have type information. For example, the

underlined tokens in Figure 5.

4.2 Experimental Setup
Parameter configuration.We use Transformer with 6 layers, 516

dimensional hidden states and 6 attention heads. The inner hidden

size of the feed-forward layer is 3072. We pre-train our model

with batch size of 16 sequences for 600,000 steps. We use Adam

with learning rate of 5e-5, 𝛽1 = 0.9, 𝛽2 = 0.999, L2 weight decay

of 0.01, learning rate warmup over the first 1,000 steps, and linear

decay of the learning rate. We use a dropout probability of 0.1 on

all layers. We use a gelu activation [18] following OpenAI GPT.

The training loss is the sum of the cross-entropy losses of the pre-

training objectives or fine-tuning objectives. Training of CugLM

was performed on 3 GeForce GTX 1080 Ti GPUs with 12GBmemory.

For each dataset, the model is pre-trained for 600,000 steps and takes

4 days to complete, and is fine-tuned for 300,000 steps and takes 2

days to complete.

Metric.We use accuracy to evaluate the performance of code com-

pletion. Our model provides an ordered list of suggestions for each

token in the source code file given the context. We compute the

top-1 accuracy, i.e., the fraction of times the correct suggestion

appears in the first of the predicted list.

Vocabulary. As shown in Table 1, in the datasets, the number

of unique tokens and types is too large to build neural models

to learn directly. We choose 𝐾 (50,000) most frequent tokens in

each training set to build the token vocabulary, which is the same

as Li et al. [27]’s study. For those tokens outside the vocabulary,

we use UNK (unknow values) to represent them. The size of type

vocabulary is also set to 50,000. In both the training and test process,

the predictions of the UNK targets are treated as wrong predictions.

The token UNK rates for Java, and TypeScript test sets are 10%, 5%,

and the type UNK rates are 9%, 1%, respectively.

4.3 Research Questions and Results
To evaluate our proposed approach, in this section, we conduct

experiments to investigate the following research questions:

RQ1:Howdoes our proposed approach perform in code com-
pletion when compared with state-of-the-art models? To an-

swer this research question, we compare our model with the fol-

lowing baseline models:

• vanilla LSTM: a vanilla LSTM neural network-based lan-

guage model.

• Pointer Mixture Network [27]: an attention and pointer-

generator network-based code completion model.

• Byte Pair Encoding based Neural Language Model (BPE

NLM) [25]: a large-scale open-vocabulary NLM for code

completion, which leverage BPE [13] algorithm to keep

vocabulary size low and successfully predict OoV (Out-of-

Vocabulary) tokens.

• Transformer-XL [8]: a self-attentional neural network-based

language model for code completion.

479

ASE ’20, September 21–25, 2020, Virtual Event, Australia Liu et al.

Table 3: Effects of each pre-training task, fine-tuning task, and the type prediction in our proposed model.

Model

Java TypeScript

Large Test Small Test Large Test Small Test

All Tokens Identifiers All Tokens Identifiers All Tokens Identifiers All Tokens Identifiers

Full Model 84.06% 55.19% 80.07% 48.47% 82.14% 41.85% 81.36% 39.28%

Pre-training tasks

- ULM 78.64% 50.10% 77.78% 44.18% 77.83% 38.44% 76.77% 37.38%

- MLM 77.42% 49.86% 76.41% 43.82% 78.93% 36.89% 78.28% 35.15%

- NCP 81.24% 52.56% 79.79% 46.54% 78.52% 40.71% 79.02% 38.49%

Fine-tuning tasks

- UMLM 80.93% 45.70% 77.21% 41.66% 78.86% 33.26% 77.58% 31.81%

- ULM - 49.50% - 43.31% - 38.25% - 35.33%

- Type Prediction 80.14% 52.05% 77.28% 46.83% 80.99% 40.73% 79.85% 38.31%

1) Comparison with LSTM based closed vocabulary models (the
first two baselines): To compare with Pointer Mixture Network, we

downloaded their publicly available source code
1
. In their model,

the programs in the datasets are parsed into ASTs, and they build

the model to perform code completion on AST node sequences.

Although the ASTs can provide more information, representing the

programs as AST node sequences is not the natural order of typing,

and the precision does not directly reflect the productivity gain of

the code completion tool. More importantly, in practice, the code is

incomplete, so the software project might not be compilable (code

is not parsable into ASTs, or parsed ASTs miss a lot of information).

Thus, representing programs as token sequences and performing

code completion on the token-level might be more practical. In this

paper, we focus on token-level code completion. In our corpus, the

programs are tokenized into token sequences. To compare with

them, we train their model within our tokenized programs using

the command line arguments given in the artifact’s README file
2
.

Their base model is a single layer LSTM network with an unrolling

length of 50 and hidden unit size of 1500. The initial learning rate

is 0.001 and is decayed by multiplying 0.6 after every epoch. The

gradients’ norm is clipped to 5. The size of the attention window is

50. Since the Pointer Mixture Network is based on LSTM language

model, we also list the results of the vanilla LSTM, where the pa-

rameter configuration of the vanilla LSTM network is set the same

as the Pointer Mixture Network.

As shown from the results, our model outperforms the two

LSTM-based models on both Java and TypeScript datasets by a

large margin, especially in identifier completion. On the Java large

test set, our model achieves the accuracy of 84.06% and 55.19% on

token’s completion and identifier’s completion, respectively, which

outperforms Pointer Mixture Network by 23.07% and 43.69%, in

terms of relative improvement. On the TypeScript large test set,

our model achieves the accuracy of 82.14% and 41.85% on token’s

completion and identifier’s completion, respectively, which outper-

forms Pointer Mixture Network by 19.47% and 23.96%. The results

on small test sets are similar to the large test set. We can find

1
https://github.com/jack57lee/neuralCodeCompletion

2
Since the Pointer Mixture Network also makes use of the additional information

derived from ASTs, the results of using token sequence as input might understate the

accuracy of the plain Pointer Mixture Network.

that the improvements on the TypeScript dataset are smaller than

Java, especially in identifier completion. The reason lies in that, the

(masked) identifier proportion in TypeScript (9.74%) is smaller than

Java (21.04%) because the type information in TypeScript is anno-

tated by developers, and only a part of the identifiers are annotated.

In the MLM pre-training task, these identifiers are masked and are

predicted based on their contextual tokens aiming at generating bet-

ter contextual and informative representations for these identifiers

as well as other tokens. During fine-tuning, the type information

of these identifiers is used to assist the identifiers’ prediction. Due

to the lower masked proportion, the pre-training and fine-tuning

procedure can offer less information than Java, thus resulting in

smaller improvements.

2) Comparison with open vocabulary model (BPE NLM): To com-

pare with BPE NLM, we downloaded their publicly available source

code
3
and train their model on our datasets. They use a single layer

GRU NLM with an unrolling length of 200 built upon sub-word

units learned from BPE. The embedding size and the hidden unit

size are both set to 512 in their model. To keep the number of param-

eters comparable with our model and other baselines, we increase

the hidden unit size and the embedding size of their model to 1500.

There are three scenarios: static, dynamic, and maintenance, where

the dynamic and maintenance settings update model’s parameters

during testing. Since our model and other baselines do not update

parameters during the test process, we present the results of the

static scenario to make the comparison fair, and realize that evaluat-

ing dynamically may improve accuracy. As shown from the results,

BPE NLM performs best on completing identifiers among all the

baseline models on both datasets, which proves the power of the

open vocabulary LM for predicting the identifiers. Even though,

our model still outperforms the BPE NLM on completing identifiers.

When evaluating on completing all kinds of tokens, the perfor-

mance of BPE NLM is not as well as the identifier completion. Our

model outperforms BPE NLM on completing all kinds of tokens by

a large margin.

3) Comparisonwith transformer network basedmodel (Transformer-
XL): To find out if CugLM’s promising results derive more from

using a Transformer-based model for code completion, or from the

3
https://github.com/mast-group/OpenVocabCodeNLM

480

Multi-task Learning based Pre-trained Language Model for Code Completion ASE ’20, September 21–25, 2020, Virtual Event, Australia

multi-task learning based pre-training and fine-tuning, we compare

our results to a Transformer-based model trained from scratch, i.e.,

without the benefit of a pre-trained embedding. Transformer-XL is

a Transformer network based language model, which introduces

the notion of recurrence to model the long-term dependency of the

input sequence. We use a 6-layer Transformer-XL network with

5 parallel heads. The dimension of each head is set to 64. We set

the segment length to be 128, and the length of the cached seg-

ments to 256. The dimensionality of the model (hidden unit) and

the embedding size is set to 800. The dimension of the feed-forward

layer is set to 1024. As seen from Table 2, transformer-XL model

outperforms the other baseline models that are based on the recur-

rent neural networks on both datasets, which demonstrates that

the Transformer-based network is more powerful than recurrent

neural networks on this task. The performance of our model is

substantially higher than the Transformer-XL model trained from

scratch. We therefore conclude that pre-training and fine-tuning

are crucial to CugLM’s success.

RQ2: What are the contributions of the pre-training tasks?
We perform an ablation study to examine the effects of the three

pre-trained tasks: ULM, MLM, and NCP. We conduct experiments

on pre-training the model without each task, and the fine-tuning

procedure remains unchanged. The results are shown in Table 3.

The first row shows the results of our full model. The second to the

fourth rows present the results of removing ULM, MLM, and NCP

from the full model during pre-training, respectively.

- ULM Removing the ULM task during pre-training. The loss func-

tion of the pre-training procedure consists ofL𝑀𝐿𝑀 andL𝑁𝐶𝑃 , and
both these tasks are based on the bidirectional transformer. As seen

from the results, removing this task hurts the model’s performance.

During fine-tuning, the objectives are based on the unidirectional

transformer. Thus, adding the ULM task during pre-training makes

the learned text representations more general because they are opti-

mized for both bidirectional and unidirectional language modeling

objectives jointly, mitigating over-fitting to bidirectional language

modeling task. Removing the ULM task would make the parameters

hard to optimized when fine-tuned on the unidirectional objectives.

Thus, the accuracy drops.

- NCP Removing the Next Code segment Prediction task during the

pre-training. The loss function consists of L𝑈𝐿𝑀 and L𝑀𝐿𝑀 . The

NCP tasks are added to help the model understand the relationships

between the code segments. The model removing NCP performs

worse than the full model, but performs better than removing ULM,

which demonstrates that the NCP task is necessary to improve the

performance but contributes less than the ULM task.

- MLM Pre-training the model without the Masked bidirectional

Language Modeling objective, and the loss function consists of

L𝑈𝐿𝑀 and L𝑁𝐶𝑃 . As shown from the results, removing the MLM

hurts the performance more than the other two tasks, especially on

identifier completion. MLM task can help the model generate better

contextual representations of the tokens, especially the identifiers,

thus can improve the model’s performance significantly.

The above results demonstrate that all of the pre-training tasks

are necessary to improve the performance, and MLM contributes

most to the improvements.

RQ3: What are the contributions of the fine-tuning tasks?
To figure out the effectiveness of the fine-tuning procedure, we also

conduct experiments by removing each of the fine-tuning task. The

results are shown in fifth and sixth rows of Table 3.

- UMLM Removing the Unidirectional Masked Language Modeling

task during fine-tuning procedure. Only the left-to-right language

modeling task is performed and the loss function becomes L𝑈𝐿𝑀 .

As seen from the results, removing this task hurts the model’s

performance on both two datasets, especially for the identifier pre-

diction. UMLM task can help the model generate better contextual

representations for the tokens. Besides, it can also utilize the type

information of the identifiers during the fine-tuning. Thus, this

fine-tuning task is necessary for improving the performance of the

code completion.

- ULM Removing the Unidirectional Language Modeling task dur-

ing fine-tuning procedure. Under this setting, the model can only

produce the results of the masked identifier prediction. The loss

function becomes L𝑈𝑀𝐿𝑀 . As seen from the results, when remov-

ing ULM task, the performance of the identifier prediction drops a

lot, which demonstrates that the language modeling task can offer

much help for the identifier prediction. Through optimizing the

model on this task jointly, the model can capture the semantic of

the input code segment better, which serves as the basis of the

improvement on identifier prediction.

RQ4: Could the predicted type help the model on token pre-
diction?When fine-tuning our model on code completion task, we

utilize multi-task learning to predict the token and its type jointly.

We first predict the type and then use the type to assist the token’s

prediction. To confirm whether our model can correctly predict the

identifier’s type, we present the accuracy of the type prediction.

Our model achieves the accuracy of 68.89% and 79.31% on Java and

TypeScript large test sets, respectively. The results demonstrate that

our model can correctly predict the identifiers’ type in most cases.

To find out whether the type prediction really helps, we conduct ex-

periment by removing the type prediction. The results are shown in

the last row of Table 3. As shown from the results, when removing

the type prediction, the model performs worse than the full model

on completing both identifiers and all tokens, which demonstrates

that the predicted type information can help the model achieve

better performance on code completion.

5 DISCUSSION
5.1 The type of completions
Except for identifiers, we also give a detailed breakdown of the

accuracies for completing different types of tokens on both our

model and BPE NLM [25], and also present these tokens’ propor-

tion. The results are shown in Table 4. Punctuations make up the

majority of the completions, and the accuracies of both our model

and BPE NLM on predicting punctuations are high, where BPE

NLM performs better than CugLM. The punctuation tokens are

much easier to complete than identifiers, but these completions

are not that useful for developers [25]. For keyword completions,

our model outperforms BPE LM by a large margin. The keywords

are predefined, reserved words used in programming that have

special meanings to the compiler, which contain the syntactic in-

formation or the attribute information of the objects. The great

performance of CugLM on completing keywords further demon-

strates that through multi-task learning based pre-training and

481

ASE ’20, September 21–25, 2020, Virtual Event, Australia Liu et al.

Table 4: Performance of completing different types of tokens.

Java TypeScript

Type Proportion CugLM BPE NLM Proportion CugLM BPE NLM

Identifiers 28.99% 48.47% 42.27% 16.62% 39.28% 36.16%

Keyword 7.69% 86.78% 72.57% 6.49% 79.47% 56.67%

Punctuation 31.98% 87.38% 90.30% 45.42% 82.64% 82.93%
Numerals 0.62% 72.62% 58.83% 1.22% 89.42% 82.44%

Operator 3.80% 85.65% 76.92% 4.03% 75.98% 65.84%

fine-tuning, the representations generated by our model can cap-

ture syntactic and semantic information better. For numeral and

operator completions, which are more related to the semantic of

the programs, our model also outperforms BPE NLM substantially.

5.2 Model complexity comparison
To analyze the complexity of our model and the baseline models,

we present the number of trainable parameters for all the models,

shown in Table 5. The number of trainable parameters of our model

is less than all the baselines. Although we adopt multi-task learn-

ing for both pre-training and fine-tuning, the number of trainable

parameters does not increase much as all of the tasks share one

multi-layer transformer network. To improve training efficiency

and avoid over-fitting, we do not use large parameter settings. Even

though, our model still outperforms the other baselines by a large

margin thanks to the pre-training and fine-tuning.

Table 5: Parameters of the baseline models and our model.

Model # of Parameters

Vanilla LSTM 168M

Pointer Mixture Network 177M

BPE NLM 145M

Transformer-XL 173M

CugLM 104M

5.3 Effect of applying BPE algorithm
To further improve the performance of our model, we also conduct

experiments on applying Byte Pair Encoding (BPE) algorithm to

build up the vocabulary of sub-words as in [25], where the rare

tokens will be segmented into more common sub-word units, and

no word is OoV. However, the performance on Java corpus is compa-

rable with the origin model, and the accuracy decreases slightly on

TypeScript corpus. We analyze the possible reasons are as follows.

During pre-training, we mask the identifiers with type information.

When we apply BPE algorithm, most of these masked identifiers

will be split into sub-word units. Thus, all of these units will be

masked, which leads to the high mask proportion and increased the

difficulty of learning the semantics of embeddings. Besides, during

fine-tuning, our model utilizes the predicted type information to

assist the token’s prediction. After splitting the tokens into sub-

word units, all of the units from one token correspond to the same

type, resulting in the semantic inconsistencies between the type

information and the sub-word units. For example, the same unit

from different tokens might correspond to different types. Thus,

applying BPE does not improve the performance of our model.

5.4 Threats to Validity
Threats to external validity relate to the quality of the datasets

we used and the generalizability of our results. We create two

massive datasets (Java and TypeScript) to pre-train and fine-tune

our model. All of the programs in the datasets are collected from

GitHub repositories. The reasons for using these two languages are

as follows. These two languages are commonly used for software

development, and we can get the identifiers’ type through static

analysis or through the developers’ annotations. However, further

studies are needed to validate and generalize our findings to other

programming languages.

Threats to internal validity include the influence of the hyper-

parameters used in our model. The performance of our model would

be affected by different hyper-parameter settings, which are tuned

empirically in our experiments. Thus, there is little threat to the

hyper-parameter choosing, and there might be room for further im-

provement. However, current settings have achieved a considerable

performance increase. Another threat to internal validity relates

to the implementation of the baseline methods. For Li et al. [27]’s

model, we apply their model to the token-level code completion,

which is originally used for AST-level code completion. In their

model, the additional information derived from ASTs is utilized to

improve the performance. The results of using token sequence as

input might understate the accuracy of the plain Pointer Mixture

Network. However, in practice, the code is incomplete, so the code

is not parsable into ASTs, or parsed ASTs miss a lot of information.

Thus, representing programs as token sequences and performing

code completion on the token-level is more practical. Under this

setting, we have tried our best to make fair comparison with Li

et al. [27] by only changing the format of the input, and keeping

the model unchanged. For BPE NLM [25], we compare our model

with the static setting of their model considering the fairness of the

comparison. We realize that evaluating dynamically may improve

accuracy. The dynamic and maintenance scenarios are not imple-

mented and compared in this work, which will be considered as

our future work.

Threats to construct validity relate to the suitability of our eval-

uation measure. We use accuracy as the metric which evaluates

the proportion of correctly predicted next token. It is a classical

evaluation measure for code completion and is used in almost all

the previous code completion work [17, 19, 27, 41, 46].

6 RELATEDWORK
Statistical Code Completion Code completion is a hot research

topic in the field of software engineering. Early work in code com-

pletion mainly bases on heuristic rules and static type information

482

Multi-task Learning based Pre-trained Language Model for Code Completion ASE ’20, September 21–25, 2020, Virtual Event, Australia

to make suggestions [21]. Since Hindle et al. [19] found that source

code contained predictable statistical properties, statistical language

models began to be used formodeling source code [17, 27, 30, 38, 50],

where N-gram is the most widely used model. [46] observed that

source code has a unique property of localness, which could not be

captured by the traditional N-gram model. They improved N-gram

by adding a cache mechanism to exploit localness and achieved bet-

ter performance than other N-gram based models. Hellendoorn and

Devanbu [17] introduced an improved N-gram model that consid-

ered the unlimited vocabulary, nested scope, locality, and dynamism

in source code.

In recent years, deep recurrent neural network-based language

models have been applied to learning source code and have made

great progress [3, 5, 27–29]. Liu et al. [28] proposed a code com-

pletion model based on a vanilla LSTM network. Li et al. [27] pro-

posed a pointer mixture network to address the OoV issue. Liu

et al. [29] propose a multi-task learning and transformer based

language model for AST-level code completion. They built model

to predict the AST node’s type and value jointly and also utilized

the hierarchical structural information in the program’s represen-

tation, which achieves state-of-the-art results on AST-level code

completion. Kim et al. [26] presented a transformer model for code

prediction and incorporated syntactic structure into the transformer

to further improve the model’s performance. Svyatkovskiy et al.

[44] proposed a code completion system based on LSTM for recom-

mending Python method calls. Their system is deployed as part of

the Intellicode extension in Visual Studio Code IDE. Karampatsis

et al. [25] proposed a large-scale open-vocabulary neural language

model for source code, which leverages the BPE algorithm, beam

search algorithm, and cache mechanism to both keep vocabulary

size low and successfully predict OoV tokens. The experimental

results demonstrate that their open vocabulary model outperforms

both N-gram models and closed vocabulary neural language mod-

els, and achieve state-of-the-art performance on token-level code

completion. Most recently, Svyatkovskoy et al. [45] implemented

and evaluated a number of neural code completion models, which

offer varying trade-offs in terms of memory, speed and accuracy.

They provided a well-engineered approach to deep-learning based

code completion, which is important to the software engineering

community.

Pre-trained Language Models Language model pre-training has

shown to be effective for NLP, and has achieved the state-of-the-

art results across many NLP tasks [7, 10, 22, 39, 40]. Pre-trained

language models can learn token contextualized representations

by predicting tokens based on their context by training on large

amounts of data, and then can be adapted to downstream tasks.

Bidirectional Encoder Representations from Transformers (BERT)

[10] is the widely used approach in NLP, which learns to predict

the masked words of a randomly masked word sequence given

surrounding contexts. BERT has significantly improved the perfor-

mance of a wide range of natural language understanding tasks.

Kanade et al. [24] extended this idea to programming language

understanding tasks. They derived contextual embedding of source

code by training a BERT model on source code. They evaluate their

model on a benchmark of five classification tasks in programs. Re-

sults show that their model outperforms the baseline LSTM models

supported by Word2Vec embeddings, and Transformers trained

from scratch. The bidirectionality nature of BERT makes it difficult

to be applied to natural language generation tasks. To overcome

this limitation, Dong et al. [11] proposed a unified pre-trained lan-

guage model (UNILM) that can be applied to both natural language

understanding and natural language generation tasks. UNILM can

be configured using different self-attention masks to aggregate con-

text for different types of language models, and thus can be used

for both language understanding and generation tasks.

In the above work, the models are learned from the input of a

single modal, for example, only from natural languages or source

code. In recent years, multi-modal pre-trained models that can learn

implicit alignment between inputs of different modalities are pro-

posed. These models are learned from bi-modal data, such as pairs

of language-image [33], language-video [43], or language-code [12].

Feng et al. [12] proposed CodeBERT, a bimodal pre-trained model

for natural language and programming language, aiming at captur-

ing the semantic connection between natural language (NL) and

programming language (PL). They trained CodeBERT with masked

language modeling task and replaced token detection task, and

evaluated it on two downstream NL-PL tasks, including natural

language code search and code documentation generation.

Inspired by the above models, we propose a code understanding

and generation pre-trained language model with a transformer-

based architecture and tailored it for code completion, which is the

first attempt at pre-training a language model for code completion.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a multi-task learning based code under-

standing and generation pre-trained language model for source

code modeling with a Transformer-based neural architecture. We

pre-train our model on two massive datasets and with three objec-

tive functions and then fine-tune it on code completion. Experimen-

tal results demonstrate that the proposed model achieves better

results than previous state-of-the-art models on completing tokens,

especially on completing identifiers. To the best of our knowledge,

we are the first to apply the pre-trained language model to code

completion. We believe this work represents a significant advance

in source code modeling, which will be beneficial as a building

block for many other applications in this area.

In the future, we plan to apply our model to other programming

languages and fine-tune our model to adapt to other tasks.

ACKNOWLEDGMENTS
This research is supported by the National Key R&D Program un-

der Grant No. 2018YFB1003904, and the National Natural Science

Foundation of China under Grant Nos. 61832009, 61620106007, and

61751210.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. (2015).

[3] Avishkar Bhoopchand, Tim Rocktäschel, Earl Barr, and Sebastian Riedel. 2016.

Learning python code suggestion with a sparse pointer network. arXiv preprint
arXiv:1611.08307 (2016).

[4] Rich Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (1997), 41–75.

483

ASE ’20, September 21–25, 2020, Virtual Event, Australia Liu et al.

[5] Hao Chen, Triet Huynh Minh Le, and Muhammad Ali Babar. 2020. Deep Learning

for Source Code Modeling and Generation: Models, Applications and Challenges.

ACM Computing Surveys (CSUR) (2020).
[6] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. (2014), 103–111.

[7] Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In

Advances in neural information processing systems. 3079–3087.
[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and

Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive LanguageModels beyond

a Fixed-Length Context. In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers. 2978–2988.

[9] Li Deng, Geoffrey E. Hinton, and Brian Kingsbury. 2013. New types of deep neural

network learning for speech recognition and related applications: an overview. In

IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
2013, Vancouver, BC, Canada, May 26-31, 2013. IEEE, 8599–8603.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL-HLT (1). Association for Computational Linguistics, 4171–4186.

[11] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng

Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-

training for natural language understanding and generation. In Advances in
Neural Information Processing Systems. 13042–13054.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming

Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT:

A Pre-Trained Model for Programming and Natural Languages. arXiv preprint
arXiv:2002.08155 (2020).

[13] Philip Gage. 1994. A new algorithm for data compression. C Users Journal 12, 2
(1994), 23–38.

[14] Han Guo, Ramakanth Pasunuru, and Mohit Bansal. 2018. Soft Layer-Specific

Multi-Task Summarization with Entailment and Question Generation. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers. Associa-
tion for Computational Linguistics, 687–697.

[15] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix: Fix-

ing common c language errors by deep learning. In Thirty-First AAAI Conference
on Artificial Intelligence.

[16] Vincent J Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018.

Deep learning type inference. In Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the foundations of
software engineering. 152–162.

[17] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks

the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 763–773.

[18] Dan Hendrycks and Kevin Gimpel. 2016. Bridging nonlinearities and stochastic

regularizers with gaussian error linear units. (2016).

[19] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-

vanbu. 2012. On the naturalness of software. In 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. IEEE
Computer Society, 837–847.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (1997), 1735–1780.

[21] DaqingHou andDavidMPletcher. 2010. Towards a better code completion system

by API grouping, filtering, and popularity-based ranking. In Proceedings of the
2nd International Workshop on Recommendation Systems for Software Engineering.
26–30.

[22] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-

tuning for Text Classification. In ACL (1). Association for Computational Linguis-

tics, 328–339.

[23] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment

generation. In Proceedings of the 26th Conference on Program Comprehension.
200–210.

[24] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2019. Pre-

trained Contextual Embedding of Source Code. arXiv preprint arXiv:2001.00059
(2019).

[25] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and

Andrea Janes. 2020. Big Code!= Big Vocabulary: Open-Vocabulary Models for

Source Code. ICSE.

[26] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2020. Code Predic-

tion by Feeding Trees to Transformers. arXiv preprint arXiv:2003.13848 (2020).
[27] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with

Neural Attention and Pointer Networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden. 4159–4165.

[28] Chang Liu, Xin Wang, Richard Shin, Joseph E Gonzalez, and Dawn Song. 2016.

Neural Code Completion. (2016).

[29] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Ming Li, Zhiyi Fu, and Zhi Jin. 2019. A Self-

Attentional Neural Architecture for Code Completion with Multi-Task Learning.

arXiv preprint arXiv:1909.06983 (2019).
[30] Fang Liu, Lu Zhang, and Zhi Jin. 2020. Modeling programs hierarchically with

stack-augmented LSTM. Journal of Systems and Software 164 (2020), 110547.
[31] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.

2015. Representation Learning Using Multi-Task Deep Neural Networks for

Semantic Classification and Information Retrieval. In NAACL HLT 2015, The 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June
5, 2015. The Association for Computational Linguistics, 912–921.

[32] Mingsheng Long and Jianmin Wang. 2015. Learning Multiple Tasks with Deep

Relationship Networks. CoRR abs/1506.02117 (2015). arXiv:1506.02117 http:

//arxiv.org/abs/1506.02117

[33] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. Vilbert: Pretraining

task-agnostic visiolinguistic representations for vision-and-language tasks. In

Advances in Neural Information Processing Systems. 13–23.
[34] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and

Rogério Schmidt Feris. 2017. Fully-Adaptive Feature Sharing in Multi-Task

Networks with Applications in Person Attribute Classification. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 1131–1140.

[35] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring

JavaScript function types from natural language information. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 304–315.

[36] Robert C. Martin. 2009. Clean Code - a Handbook of Agile Software Craftsmanship.
Prentice Hall.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems. 3111–3119.
[38] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.

2013. A statistical semantic language model for source code. In Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation, August 18-26, 2013. ACM, 532–542.

[39] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word

Representations. In NAACL-HLT. Association for Computational Linguistics,

2227–2237.

[40] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya

Sutskever. 2018. Improving language understanding by genera-

tive pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper.
pdf (2018).

[41] Veselin Raychev, Pavol Bielik, and Martin T. Vechev. 2016. Probabilistic model for

code with decision trees. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 -
November 4, 2016. ACM, 731–747.

[42] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion

with statistical language models. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014. ACM, 419–428.

[43] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid.

2019. Videobert: A joint model for video and language representation learning. In

Proceedings of the IEEE International Conference on Computer Vision. 7464–7473.
[44] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia:

AI-assisted Code Completion System. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2727–2735.

[45] Alexey Svyatkovskoy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana

Franco, and Miltiadis Allamanis. 2020. Fast and Memory-Efficient Neural Code

Completion. arXiv preprint arXiv:2004.13651 (2020).
[46] Zhaopeng Tu, Zhendong Su, and Premkumar T. Devanbu. 2014. On the localness

of software. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16 -
22, 2014. ACM, 269–280.

[47] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh.

2019. Neural program repair by jointly learning to localize and repair. arXiv
preprint arXiv:1904.01720 (2019).

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[49] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and

Philip S Yu. 2018. Improving automatic source code summarization via deep rein-

forcement learning. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. 397–407.

[50] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a

dual task of code summarization. In Advances in Neural Information Processing

484

http://arxiv.org/abs/1506.02117
http://arxiv.org/abs/1506.02117
http://arxiv.org/abs/1506.02117

Multi-task Learning based Pre-trained Language Model for Code Completion ASE ’20, September 21–25, 2020, Virtual Event, Australia

Systems. 6563–6573.
[51] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional

Clone Detection by Exploiting Lexical and Syntactical Information in Source

Code.. In IJCAI. 3034–3040.

[52] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong

Liu. 2019. A novel neural source code representation based on abstract syntax

tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 783–794.

485

